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Abstract: Air quality in and around ships is governed by a variety of pollution sources that are
unique for the shipping context. This makes the living and working conditions on ships substantially
different from situations in cities or inside buildings. To gain insight into these differences, informa-
tion about trends and absolute pollutant amounts on board ships is needed. However, the installation
of reference instruments to monitor NO2, NO, O3, particulate matter and other environmental param-
eters is often not possible because of their size, weight or because of safety reasons. For that reason,
more compact devices incorporating a variety of sensors are a good alternative. However, the use of
such sensors is only possible when their behaviour and performance in a shipping context are well un-
derstood. To study this context, we were allowed to compare sensor-based measurements performed
on a 36-year old ship dedicated to near shore operations with measurements of reference-grade
instruments. Additional behavioural information of sensors is obtained by measuring campaigns
organized on several inland ships. This contribution demonstrates that trends registered by gas and
particulate matter sensors are reliable but that insufficient detection limits, higher noise, imperfect
calibration and sensor errors result in some reliability constraints.

Keywords: indoor air quality (IAQ); ship; vessel; pollutants; temporal trends; sensors

1. Introduction

From the numerous studies about indoor air quality in buildings, it is known that
building materials, adhesives and wood in furnishing [1–3], consumer products (e.g., clean-
ing products, personal care products), human presence (e.g., metabolic emissions) and
occupants’ activity (e.g., cooking) release a variety of gases and/or particulate matter [4–9].
The outgassing and emission from these indoor sources increases the pollutant background
concentration due to the infiltration of pollutants from outdoor sources. Therefore, indoor
sources affect human health and contribute to indoor air quality [10,11]. Indoor air pollu-
tants are also found in vehicles’ cabins (e.g., cars, trucks) [12–15], in airplanes [16–18] or
ships [19–24]. The specific design of a vessel and the dedicated building materials might
influence the occurrence and behaviour of indoor sources. In addition, ships are also
pollution hotpots that affect their environment [25–31]. Examples of ship related pollution
sources that are less common in and around buildings are pollutants emitted by the engine
(e.g., fuel [22,23], exhaust gases [22,32,33], vapours escaping from fuel tanks during filling
or heating), cargo vapours [34,35], cargo operations where gas might escape, or works on
deck such as repainting the ship with solvent-based paints [36]. Moreover, ships spend a
substantial amount of time in harbors where industrial activities generate elevated levels
of pollution. Another example of outdoor sources are dredging activities where odorous
compounds such as H2S may be released [37,38]. Such outdoor sources affect the air inside
a ship through infiltration. Therefore, it is possible that the concentration range and the
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dynamics in the concentration trends are different from the ones that are found in build-
ings. Unfortunately, there is insufficient knowledge available about the impact of all these
pollution sources on the indoor air quality. An additional difficulty in the evaluation of
indoor air quality is that the crew both live and work on their ship and that each of these
situations have to comply with different legislation [34].

Unfortunately, the organization of measuring campaigns to analyze indoor air quality
on ships is not straightforward. Ships are moving objects that are ashore during short time
windows. In addition, these time windows are usually not known long in advance, so
researchers and their measuring instruments must be on standby before boarding. Besides
the need for highly mobile instruments, the height difference between deck and shore must
be surmounted (there is not always a crane available) and they must be brought to the
proper room by passing small doors and steep staircases. In addition, the wiring of the
instruments inside the confined rooms must not compromise the safety of the ship and the
crew, and it should not disturb the work of the crew. Therefore, compact and lightweight
instruments are recommended for measuring campaigns on board ships. Unfortunately,
the reference measuring methods as described in air quality directive 2008/50/EC [39]
require instruments that are rather bulky or heavy. In addition, many of these instruments
only monitor a limited number of environmental parameters so that several instruments
must be combined to obtain an overall picture. The measuring conditions on ships are more
aggressive for the devices than measurements in, for example, buildings (e.g., probability of
displacements when the ship is rolling, elevated corrosion risk due to salts, etc.). This means
that the use of expensive reference equipment entails a higher risk for the research team.

A possible solution to the mentioned restrictions is to use compact instruments that
are not only cheaper but that can also measure multiple environmental parameters simulta-
neously. Some define a low-cost sensor as <$100 and a low cost monitor consisting of one
or more sensors and communication/data components as <$1000 [40]. This study monitors
a large number of environmental parameters by combining many sensors. Some of these
sensors are somewhat more expensive (<$500). Due to the many sensors, the monitoring
system costs about $5000. Therefore, we denote the system as a lower-cost system. The
possibilities of lower-cost sensors have already been explored during environmental stud-
ies [41], occupational fields [42–44] and indoor air analysis [45]. Besides other advantages,
this technology allows for the in-house development of monitoring systems by combining
several lower-cost sensors with communication/data components [40,46–56]. An important
collateral gain of cheaper instruments is that it becomes affordable to simultaneously moni-
tor multiple locations. The usefulness of sensors is usually assessed by comparing sensors
and reference measurements in laboratory conditions where environmental parameters
are changed in a controlled way [57,58]. An alternative comparative test is to perform
co-location experiments nearby national air quality measuring stations where pollutants
in the air are determined with sufficient accuracy [59–61]. Different kinds of calibration
procedures can be applied on the parallel measurements performed in laboratory or in
co-location [62–64], such as simple linear regression, multi-linear regression [65] or machine
learning [66–68] methods. The laboratory and field measurements give a good insight in
the reliability of sensors but they are inappropriate to evaluate the impact of the shipping
context on sensor measurements. Instead, mobile reference devices must be brought to the
desired site. Several solutions exist to make such reference devices mobile: a van where the
reference devices are built [69,70], drones or airplanes that are sniffing exhaust fumes from
ships [71,72], and the use of more compact higher quality monitoring systems (e.g., Model
202 Ozone Monitor of 2B Technologies, Boulder, CO, USA [73], ozonesonde [74] such as
the one of EN-SCI, Westminster, CO, USA).

Despite the advantages and possibilities of lower-cost monitoring systems, it is striking
that quite a few publications emphasize the (calibration) limitations and the performance
problems of such sensors [75,76]. In contrast to this negative way of evaluating lower-cost
sensors [76,77], this contribution focuses on how meaningful sensor measurements can
be in a shipping context. With ‘meaningful’ we mean how much useful information can
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be extracted from sensor readings to evaluate air quality while operating in a real-world
application. As long as the data are good enough for analysing air quality or to sustain
decision making, such devices are useful even when the data of reference devices are
of higher quality. In this contribution, the meaningfulness of sensor measurements is
assessed by comparing them with other sensors or with reference measurements performed
inside ships. To this end, the difficulties of on board reference measurements have been
overcome and several measuring campaigns are organized on a 36-year old ship dedicated
to near shore operations. The study shows that most of the tested sensors generate valuable
information and that the environmental parameters show strong fluctuations. These
fluctuations are not sensor errors but contain meaningful information about the shipping
context. However, some environmental parameters could not be evaluated with lower-
cost sensors.

2. Materials and Methods
2.1. Lower-Cost Monitoring Device

The sensor box shown in Figure 1 contains a Poynting Puck antenna which is coupled
to a Teltonika RUT955 router to assure the collection of georeferenced data. The router
also establishes the connection with the Cloud. The single board computer (Raspberry
Pi 3 Model B+) requests a measurement from the microprocessor (ATmega2560) on the
PCB sensor shield. The microprocessor is connected to a real time clock (Maxim Integrated
DS3231MZ+) and a wide range of sensors via a PCB. The board contains the following
digital sensors: Sensirion SHT85(Temperature T, Relative humidity RH), E + E Elektronik
EE894 (T, RH, pressure, CO2) and the OPC-N3 of Alphasense (PM1, PM2.5, PM10). The
sensor shield also contains analog sensors whose signals are converted into digital signals
via an ADC (Texas Instruments ADS1015): 6 B-type gas sensors of Alphasense (CO, NO2, O3,
NO, H2S, SO2), the Alphasense PID-AH2 sensor for the total volatile organic compounds
(TVOC) and the Alphasense VOC Metal Oxide sensors. The request of the single board
computer to get the sensor values triggers the central microprocessor to perform a cycle in
which all sensors are read for 10 times. That process is performed in a matter of milliseconds.
The microprocessor calculates the average sensor readings and sends them to the single
board computer. There, a Hampel filter treats the raw sensor signals in real time to suppress
noise and replace outliers [78]. At the same time, a calibration function converts the raw
signals into the corresponding physical values. The quantities obtained after calibration are
also visualized on a screen that is incorporated in the side of the sensor box. For all sensors,
laboratory-based calibration tests have shown a linear relationship between sensor readings
and the corresponding physical values for measuring ranges expected in a shipping context.
Although temperature and relative humidity in indoor conditions are more stable than
for outdoor conditions, the measuring context still affects the calibration. Therefore, the
calibration used cannot be considered as perfect. The sampling time is set to 3 min. This
was initially considered as fast enough to monitor changes in a ship’s voyage and slow
enough to give the single board computer the time to process all incoming data.

2.2. Measuring Campaigns

To gain insight about the performance of lower-cost sensors in the analysis of indoor
air in ships, several studies were performed on a ship of 36 years old that is used for
near-shore operations. The ship did not transport any cargo and always sailed on diesel.
During the measuring campaign from 15–18 March 2021 in the engine room, the sensor box
has been compared with the Airpointer, which was used as a reference-grade instrument.
The Airpointer® (mlu-recordum Environmental Monitoring Solutions, Wiener Neustadt,
Austria) is a heavy, large but transportable system equipped with several reference moni-
toring systems for NO, NOx, NO2 and O3. With the help of a crane, it was placed on the aft
deck of the ship. The instrument was rolled into a room where the device was attached to a
wall. With a sampling tube of about 30 m, air of the engine room could be sampled and
analysed every minute. Prior to the measuring campaign, the instrument was calibrated in
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situ using gas bottles with a reference gas and with an ozone generator. The sensor box
was installed next to the inlet of the sampling tube in the engine room. This means that
both systems analyze exactly the same air.
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Figure 1. Overview of the sensor box. (a) General architecture of the sensor box where all sensors are
attached to a sensor shield and that communicates with the Raspberry Pi; (b) Photo of the sensor box
with the router and the screen incorporated in the side of the sensor box.

During the measuring campaign of 24–26 November 2020 in the wheelhouse of the
old ship, the sensor box was compared with a reference-grade instrument for particulate
matter. The Grimm 11-D acted as a reference device for PM1, PM2.5 and PM10. It should be
remarked that particulate matter in fresh ship engine exhaust are in the ultrafine particle size
range (i.e., 1–400 nm) [79] and all particles below 253 nm are not observed by the instrument.
In addition, Radiello radial-type diffusive samplers were used for the analysis of NO2 and
SO2 (i.e., cylindrical cartridges RAD166 containing microporous polyethylene particles
impregnated with triethanolamine). For a known period of time, the chemicals inside the
cartridges selectively absorb the target gases. To avoid concentration gradients caused by
the analytical method, the air nearby the diffusion tubes was forced to circulate using a
small fan. The absorbed target gases are then extracted in a laboratory and quantified with
ionic chromatography by following the Radiello specifications. A blank tube is always
placed unopened at the measuring site and analysed together with the other tubes. No
significant contamination has been found on the blanks.

In the period June–October 2021, the sensor boxes have been deployed in the kitchen,
wheelhouse and/or engine room on four different inland ships. The inland ships are used
for different types of activities. In that period, nine different time series have been collected.
The time series have been used to evaluate the performance of the sensor boxes under
different circumstances.

2.3. Performance Assessment of Sensors

The evaluation method used in this contribution analyzes sensors in a rather holistic
way, looking not only at how well such sensors approach reference measurements but also
at the reliability of the measured trends and the completeness of the analyses. Calibration
issues are important, but it is not our aim to demonstrate that sensor measurements are of
lower quality than reference measurements because this is already known, [59,63,80–82]
as is often the reason for this [57,83]. Instead, we want to know whether sensors are good
enough to underpin certain decisions that can improve indoor air quality on board ships. If
this were the case, sensors could generate meaningful information. Therefore, it is more
important to know why and when a sensor deviates from the reference measurements than
how much it fails. The usefulness of sensor data is determined by the criteria given below.
When a monitoring system satisfies the three criteria to some extent, then it is possible to
build a decision support system around it [84,85].
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Precision and accuracy of sensor measurements: For some parameters, it is possible
to perform both reference and sensor measurements from the same room under real-
world conditions at the same time. This makes it possible to visually compare both
types of measurements with each other and to identify the reasons why a sensor fails to
measure the parameter correctly. A good precision and accuracy of the measurements
is important because it makes it possible to compare them with standards [86,87] and
thresholds prescribed in legislation [88]. It gives an insight as to whether mitigation actions
are needed;

Reliability of temporal trends: By conducting monitoring campaigns with reference
and sensor based devices in the same room on board ships, it is possible to observe
differences between both trends. The differences are related to the limitations of the sensor.
When the reference instrument is not available, two sensors using different technologies to
measure the same parameter can be compared instead. The similarities between them must
be caused by the same air they are measuring and give an idea about the usefulness of
the measurements. Trends give an insight in the moments of poorer air quality and are an
important source of information about the behaviour of the hazards and thus about what
kind of mitigation action is needed;

Completeness of the analysis: Missing a critical pollutant in the analysis might have
a more substantial impact on the overall air quality assessment than, for example, imperfect
calibration. That is why a large series of sensors have been used to measure the same
indoor air on board ships. This allows us to find out which sensors are useful for such
analyses and which are not.

3. Results

During the field-based comparative study performed in the engine room of the 36-year
old ship, the trend and concentration of NO, NO2 and O3 could be studied in detail (see
Figure 2). The trends in the reference measurements shown in Figure 2a suggest that the
concentration of the pollutants fluctuate. For NO and NO2, the trend consists of a low but
slowly fluctuating background concentration (NO: 0.5–2 ppb; NO2: 2–10 ppb) with top
narrow peaks with variable heights. Some of these peaks are higher than 100 ppb. The
trend of O3 consists of a background signal of 10–40 ppb with narrow valleys. The valley
width varies between 2 and 24 min (average ± standard deviation: 12 ± 7 min). Some of
the valleys are preceded by 1–9 min by an NO/NO2 peak. Most probably, the NO-peak
triggers the following reaction with O3: NO + O3 → NO2 + O2 [89]. When looking at the
sensor measurements in Figure 2b, it is clear that the position of the tall NO and NO2 peaks
coincide with the peaks measured with the reference instrument. The comparison indicates
that the structure of the temporal trend as detected by the sensors is reliable. Despite some
limitations as described in the list below, the three sensors are able to deliver meaningful
information about the indoor air on board a ship:

Underestimation of peak maxima: The most obvious difference is that the NO and
NO2 sensors severely underestimates the peak maxima. It is possible that the sensors are
not able to follow the speed at which the concentration changes. Another explanation is
that the linear calibration function as determined in laboratory conditions is affected by
the context in which the measurements are performed. The underestimation introduces
an uncertainty when the measurements are compared with the health-related threshold.
This means that measurement uncertainties limit the extraction of useful information to
some extent;

Undersampling: Since the peak widths are comparable with the sampling time of
the sensor box (i.e., 3 min), such peaks are certainly affected by undersampling. A peak
maximum between 2 sampling moments will be missed, resulting in an underestimation of
the peak height. Some peaks only contain of 1 data point and may be wrongly considered
as a spike by data cleaning methods (see for example also Figure 7b). Ship conditions are
changing faster than originally expected and a sampling time of 1 min would have been
more appropriate;
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Worse detection limit: For NO, the low background signal and the smaller peaks
detected by the Airpointer remain below the detection limit of the sensor and could not be
detected (detection limit manufacture: ca. 15 ppb; detection limit based on peak detection:
20–40 ppb). However, the presence of large detectable peaks makes the NO-sensor usable
to detect moments of worse indoor air quality;

Higher noise: For O3, the shape of the low-frequency background concentration
is measured correctly but due to higher noise the valleys as detected by the Airpointer
remain unresolved.
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Figure 2. Pollutant concentration over time measured by the reference instrument and the sensor
box of the same air in the engine room. The measuring campaign covers the period 15–18 March
March 2021. Due to the complexity of the trends, it is impossible to superimpose sensor and reference
measurements in a single graph; (a) 1-min data collected by the Airpointer containing reference
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photometry as prescribed by EN 14625:2005 [91]); (b) 3-min data collected by the sensor box using
electrochemical gas sensors of Alphasense.

The sensor box also contains the Alphasense SO2 and H2S sensor so that their trends
could be registered during monitoring campaigns (see Figure 3). Although SO2 is an
important pollutant for seagoing vessels due to the sulphur content in heavy fuel [31,92],
that sensor did not show meaningful trends during the organized monitoring campaigns.
This must be due to the use of sulphur-poor diesel by the old ship and by the inland
ships where measuring campaigns have been organized. The combined NO2-SO2 Radiello
radial-type diffusive sampler was able to detect NO2 in several locations on the old ship,
but SO2 remained below its detection limit of about 1 ppb for all locations. During one
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of the measuring campaigns, a reference monitoring system registered a background
concentration of 1 ppb with peaks up to 7 ppb in a sleeping cabin. For the dredging sector,
H2S is an important pollutant because it is produced in rotting processes in soils that are
removed during dredging operations. Due to the problems described below, the trends
observed cannot be considered as meaningful:
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Figure 3. Concentration of SO2 and H2S over time in the engine room during the same measuring
campaign as shown in Figure 2. The 3-min data give the false impression of a meaningful trend. The
measured concentrations with a faint variation between 0 and 2 ppb are close to the detection limit of
the sensor.

Signal is below detection limit: The SO2 and H2S indoor concentrations are close
or below the detection limit of the sensors (detection limit according to manufacturer for
SO2 and H2S is ca. 10 ppb). In addition, no concentration peaks exceeding the detection
limit have been observed for these gases. Also in the city of Brussels, outdoor air at station
41R001 for 2021 is 0.8 ± 0.6 ppb with peak maxima below 5 ppb [93], suggesting that
the pollutant concentration in outdoor air of a large city is systematically below detection
limit of the sensor. The pollutant H2S is not measured by the national monitoring system
in Belgium;

Dominant effect of cross-sensitivity: Although the pollutant concentration is below
the detection limit, the sensor generates a trend (see Figure 3) that might be interpreted as
a meaningful signal. However, these ‘trends’ may be caused by cross-sensitivity because
the concentration of interfering gases such as NO2, NO or CO is higher than that of the
target gas.

From analyses performed with Radiello™ diffusive samplers during other measuring
campaigns on the ship, it is clear that the makeup of the mixture of organic compounds
varies from location to location and with time (results not shown here). The variability
in the mixture makes it impossible to calibrate the TVOC-sensors because the sensor has
a different response to each compound. In addition, we had no reference-grade TVOC
monitor at our disposal to perform an experiment in a co-location. Therefore, we have
included a second TVOC-sensor in the sensor box. The PID and MOX sensors of the
Alphasense measures the TVOC-content with a different technology. Since the sensors
measure the TVOC-trend at the same location in an independent way, a correlation between
both trends gives information about their meaningfulness. The trends of both sensors in
Figure 4 show peaks on top of a background. Many of the peaks are in register and suggest
that their variation is related to changes in the TVOC-concentration. However, the issues
below limit the information that can be extracted from these trends:
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Figure 4. Measured TVOC-signal in mV over time and measured in the engine room during the same
campaign as in Figures 2 and 3. The trends are measured with a PID and MOX-sensor. The signal
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where the peak ratios are different for PID and MOX sensor.

Change in mixture makeup: Despite the fact that both sensors measure peaks at
the same moment, at several occasions their response (red rectangle in Figure 4) to the
same air is different. This must be due to a different response to a changing mixture of
organic compounds. A series of TVOC sensors give an insight in the mixture makeup but
it also complicates their calibration. Therefore, the raw signals in mV have been plotted
in Figure 4;

Removal of sensor artefacts of the MOX-sensor: The heater temperature of the MOX-
sensor is modulated between two temperatures to increase the selectivity. However, this
modulation distorts the trend and this high frequency fluctuation must be removed by
applying filters. Several types of filters have been tested but none of them could suppress
the modulation completely. The filtering that has been applied resulted in ripples.

During another campaign in the old ship, a reference instrument was placed in the
wheelhouse to analyse the trends and absolute values of particulate matter. The results of
the reference measurements are shown in Figure 5a. In parallel, the Alphasense OPC-N3
sensor performed the same analysis (see Figure 5b). A first observation is that the peaks of
both measuring systems are in register, meaning that they both observe the same trend. The
trends in Figure 5a constitute tall peaks (PM10: peak width: 1–20 min; height 10–70 µg/m3)
and broader peaks (PM10: width: 20–150 min; height: 20–50 µg/m3), superposed on a
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slowly fluctuating background signal (<1–10 µg/m3). The lower-cost sensor is able to
measure both the background and peak contributions. This makes the OPC-N3 useful in
the analysis of pollution sources affecting indoor air quality. However, some limitations
have been noticed:
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Figure 5. Measured concentration of particulate matter in the wheelhouse of the old ship over time
as determined with a high-end and low-cost optical particle counter monitoring. The measuring
campaign covered the period 24–26 November 2020; (a) Reference measurements performed with
the Grimm; (b) Measurements performed in the same room with the sensor box containing the
Alphasense OPC-N3 sensor. The peak ratio in the red rectangle as determined by the 2 instruments
are different. For the blue rectangle, the peak height of the largest peak as measured by the sensor is
higher than for the reference measurement.
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Invisible nanoparticles: Particulate matter in fresh ship engine exhaust are in the
ultrafine particle size range (i.e., 1–400 nm) [79,94]. Since the OPC-N3 is only able to
measure the presence of particles down to 350 nm, a large part of the ultrafine dust remains
undetectable for the instrument. The reference instrument has a cut point of 253 nm and
also suffers from this problem;

Elevated noise for PM10 measurements: The PM10 measurements with the OPC-N3
sensor tend to be more irregular than that of the reference instrument due to higher noise. In
addition, PM10-phantom peaks appear to be present that are not observed by the reference
instrument. For PM1 and PM2.5, the measurements by the sensor are less affected by noise
and the sensor readings are more similar to the reference instrument;

Inconsistencies in the calibration: When comparing the PM1 measurements of both
instruments, peaks are detected at the same moments. However, the sensor underestimates
some peaks and overestimates others. For example, the peak ratio of the two larger peaks in
the red rectangle in Figure 5 are clearly different (reference: 0.25; sensor: 0.5). In that period,
both temperature and relative humidity can be considered as constant and cannot explain
the difference in ratio. For the highest peak in the blue rectangle, the sensor registers a
higher peak height than the reference instrument (20 vs. 34 µg/m3). There does not seem
to be an obvious explanation for these variations in ratio. Although both instruments
monitor air about 1 m apart, it is possible that the distribution of particulate matter in the
wheelhouse is not homogenous.

The Alphasense OPC-N3 optical particle counter also sizes the particles in discrete
bins. The mass concentrations PM1, PM2.5 and PM10 correspond with the first three bins,
first six bins and first 12 bins, respectively. The number of detected particles in the first
12 bins are shown in Figure 6. The first 6 bins contain 99.997% of the detected particles,
suggesting that PM10 should be close to the PM2.5 concentration. It should be remarked
that aerosols from ship exhaust emissions contribute mostly to the fine fraction (PM1)
and to a lesser extent to the medium-sized fraction (PM2.5) [95]. However, the OPC-N3
also registered elevated PM10 concentrations at some moments in time. For most of these
moments, a higher number of particles have been detected in the bins of the smallest
particles. In the higher bins, the number of particles remains low or even absent. Since
the PM10 concentration is often higher than zero, an algorithm is most probably used that
calculates the PM10 concentration (in µg/m3) by using the particle size distribution of the
lower bins (expressed as number of particles). The impact of just a few larger particles on
the particle size distribution might introduce random errors in the estimation of PM10.

In addition to the measuring campaigns on the old ship, other campaigns have been
organized on various types of inland ships. During these campaigns, several sensor errors
have been identified. The most remarkable errors are summarized in Figure 7 and described
in the list below.

Saturation of the signal: The analog signal of the Alphasense CO-B4 sensor is a
voltage and cannot exceed the input voltage of the power supply (i.e., 5 VDC) to which
the sensor is connected. If the CO-concentration becomes too high, the signal will be
saturated. Although the saturation level of c. 5 ppm is still below the non-occupational
short-term exposure limits (around 6 ppm), the occupational TLV thresholds (about 10 ppm)
and the occupational STEL thresholds (200 ppm), such high values were not expected in
the wheelhouse. Arrow 1 shows the normal measurements of the working (i.e., signal
proportional to the pollutant concentration) and auxiliary signal (i.e., background signal)
of the sensor. Then, both electrodes are saturated but the auxiliary signal drops rather fast
to 0 V (i.e., arrow 2). Arrow 3 shows the saturated signal of the working electrode while
the auxiliary signal is zero. The peak width is about 30 min. After the occurrence of the
peak, both electrodes have an output signal of 0 V (i.e., arrow 4). This behaviour suggests
that the sensor has difficulties in measuring high concentrations and that time is needed
before the sensor re-establishes its normal working conditions. It appears that in a shipping
context a CO-sensor is needed that can measure a larger concentration range;
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Figure 6. Number of particles in the first 12 size bins as detected by the OPC-N3 sensor over time
during the same monitoring campaign as the measurements in Figure 5. The discrete size bins give
an insight into the particle size distribution.

Undersampling: Figure 7b shows the occurrence of two peaks as measured by a
reference system with a sampling time of 1 min and an NO2 sensor that is measuring
every 3 min. For the sensor measurements, it is clear that some peaks appear as a spike
(i.e., arrow 5). In this case, the spike contains meaningful information and should not be
confused with an unwanted outlier;
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Figure 7. Raw sensor readings over time for the CO-B4 and NO2-B43F sensors and some sensor
errors identified during a variety of monitoring campaigns. The signal of the working electrode is
abbreviated as WE and of the auxiliary electrode as AUX; (a) A situation where the working electrode
of the CO-sensor is saturated; (b) A situation where a peak consists of only one data point; (c) Situation
of cross-sensitivity where NO shows a negative peak; (d) Situation where the environment creates
noise in the WE and AUX signals and where this interference stops at some point.

Cross-sensitivity: The saturated CO-signal in Figure 7c is preceded by a tall TVOC-
peak as detected by the Alphasense PID sensor. In that period, the working electrode of the
NO sensor shows a negative peak (i.e., arrow 6). Since the CO concentration in air is so
much higher than that of NO, the impact of CO on the NO-sensor due to cross-sensitivity
becomes increasingly important. In the zone where the CO-signal is dropping, a small H2S
and NO peak is observed. It is not clear whether these peaks have a physical meaning;

Interference: During one measuring campaign, the measured voltages of the gas sen-
sors contain a substantial amount of noise (see arrow 7 in Figure 7d). For unknown reasons,
that interference suddenly disappeared and all sensors started to work properly again.

4. Discussion and Conclusions

Real time indoor air quality monitoring in real-world situations has demonstrated
that lower-cost sensors give meaningful information for NO2, NO, O3, CO, TVOC and PM
trends on board ships. This means that a multi-sensor monitoring system is able to give a
fairly complete analysis. From the parameters used, on some occasions the CO exceeded
the concentration range of the sensor and, therefore, a sensor with a wider measuring range
might be preferable. For SO2 and H2S, no valuable information could be obtained for ships
burning low sulphur fuel due to an insufficient detection limit. However, the detection limit
of the sensors is about 1 ppb and is lower than the non-occupational long-term threshold
for human health (20–30 ppb). For the PM measurements, PM1 and PM2.5 appear to be
more reliable than the PM10 measurements.
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The time series shows the presence of many fluctuations and peaks. The trends
and the position of the peaks in the time series of the pollutants analysed are in line
with the reference measurements. This means that the peaks have physical meaning. A
multi-sensor monitoring system is able to monitor trends in pollutant concentrations in a
reliable way. However, the sensor measurements also show several limitations. For NO,
the lower background concentrations and the smaller peaks could not be detected due to
the insufficient low detection limit. Although a sampling time of 3 min appeared to be
reasonable during the organization of the measuring campaigns, it became clear that some
tall peaks might have a width of about 6 min. Such tall peaks appear in the time series
as spikes of a single data point that might be confused with unwanted outliers by data
cleaning methods. Therefore, a sampling time of 1 min would have been more appropriate.

The sensor measurements suffer from imperfect calibration. For example, the peak
heights in the trends can be underestimated. This suggests that calibrations performed
under laboratory conditions cannot be extrapolated in a simple way to the context of a
ship. The O3 signal is determined by subtracting the NO2 signal from the OX signal and
contains higher levels of noise than the other lower-cost gas sensors. As a result, the valleys
as seen in the reference measurements could hardly be observed in the sensor signal. More
elaborate studies are needed to further improve the calibration method and reduce the
contribution of noise.

The sensor readings also suffer from other artefacts. One of the artefacts is that at
elevated CO-concentrations, the signal of the working and auxiliary electrodes of the
CO-sensor is incorrect. If an interfering gas in air is considerably higher in concentration
than the concentration of the target gas, the impact of that gas due to cross-sensitivity will
dominate the sensor reading. This might explain the variation in the H2S and SO2 trends.
Cross-sensitivity can also induce negative peaks. Finally, considerable amounts of noise is
sometimes picked up from the environment.
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